semitechnologies/weaviateThe AI-native database for a new generation of software
Weaviate is an open-source vector database that simplifies the development of AI applications. Built-in vector and hybrid search, easy-to-connect machine learning models, and a focus on data privacy enable developers of all levels to build, iterate, and scale AI capabilities faster.
To get started quickly, have a look at one of these pages:
For more details, read through the summary on this page or see the system documentation.
Weaviate uses state-of-the-art machine learning (ML) models to turn your data - text, images, and more - into a searchable vector database.
Here are some highlights.
Weaviate is fast. The core engine can run a 10-NN nearest neighbor search on millions of objects in milliseconds. See benchmarks.
Weaviate can vectorize your data at import time. Or, if you have already vectorized your data, you can upload your own vectors instead.
Modules give you the flexibility to tune Weaviate for your needs. More than two dozen modules connect you to popular services and model hubs such as OpenAI, Cohere, VoyageAI and HuggingFace. Use custom modules to work with your own models or third party services.
Weaviate is built with scaling, replication, and security in mind so you can go smoothly from rapid prototyping to production at scale.
Weaviate doesn't just power lightning-fast vector searches. Other superpowers include recommendation, summarization, and integration with neural search frameworks.
Software Engineers
Data Engineers
Data Scientists
A Weaviate vector database can search text, images, or a combination of both. Fast vector search provides a foundation for chatbots, recommendation systems, summarizers, and classification systems.
Here are some examples that show how Weaviate integrates with other AI and ML tools:
These demos are working applications that highlight some of Weaviate's capabilities. Their source code is available on GitHub.
Weaviate exposes a GraphQL API and a REST API. Starting in v1.23, a new gRPC API provides even faster access to your data.
Weaviate provides client libraries for several popular languages:
There are also community supported libraries for additional languages.
Free, self-paced courses in Weaviate Academy teach you how to use Weaviate. The Tutorials repo has code for example projects. The Recipes repo has even more project code to get you started.
The Weaviate blog and podcast regularly post stories on Weaviate and AI.
Here are some popular posts:
At Weaviate, we love to connect with our community. We love helping amazing people build cool things. And, we love to talk with you about you passion for vector databases and AI.
Please reach out, and join our community:
To keep up to date with new releases, meetup news, and more, subscribe to our newsletter
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务