专属域名
文档搜索
轩辕助手
Run助手
邀请有礼
返回顶部
快速返回页面顶部
收起
收起工具栏

semitechnologies/weaviate Docker 镜像 - 轩辕镜像

weaviate
semitechnologies/weaviate
Weaviate向量数据库是专为新一代软件应用打造的专用数据库,具备高效存储、索引与查询向量嵌入的核心能力,能深度支持语义搜索、智能推荐、自然语言处理等AI驱动场景,可快速响应现代应用对非结构化数据理解与处理的需求,为构建创新软件系统提供坚实的数据基础。
51 收藏0 次下载activesemitechnologies镜像
🚀专业版镜像服务,面向生产环境设计
版本下载
🚀专业版镜像服务,面向生产环境设计

The AI-native database for a new generation of software


Weaviate is an open-source vector database that simplifies the development of AI applications. Built-in vector and hybrid search, easy-to-connect machine learning models, and a focus on data privacy enable developers of all levels to build, iterate, and scale AI capabilities faster.

To get started quickly, have a look at one of these pages:

  • Quickstart tutorial To see Weaviate in action
  • Contributor guide To contribute to this project

For more details, read through the summary on this page or see the system documentation.


Why Weaviate?

Weaviate uses state-of-the-art machine learning (ML) models to turn your data - text, images, and more - into a searchable vector database.

Here are some highlights.

Speed

Weaviate is fast. The core engine can run a 10-NN nearest neighbor search on millions of objects in milliseconds. See benchmarks.

Flexibility

Weaviate can vectorize your data at import time. Or, if you have already vectorized your data, you can upload your own vectors instead.

Modules give you the flexibility to tune Weaviate for your needs. More than two dozen modules connect you to popular services and model hubs such as OpenAI, Cohere, VoyageAI and HuggingFace. Use custom modules to work with your own models or third party services.

Production-readiness

Weaviate is built with scaling, replication, and security in mind so you can go smoothly from rapid prototyping to production at scale.

Beyond search

Weaviate doesn't just power lightning-fast vector searches. Other superpowers include recommendation, summarization, and integration with neural search frameworks.

Who uses Weaviate?

  • Software Engineers

    • Weaviate is an ML-first database engine
    • Out-of-the-box modules for AI-powered searches, automatic classification, and LLM integration
    • Full CRUD support
    • Cloud-native, distributed system that runs well on Kubernetes
    • Scales with your workloads
  • Data Engineers

    • Weaviate is a fast, flexible vector database
    • Use your own ML model or third party models
    • Run locally or with an inference service
  • Data Scientists

    • Seamless handover of Machine Learning models to engineers and MLOps
    • Deploy and maintain your ML models in production reliably and efficiently
    • Easily package custom trained models

What can you build with Weaviate?

A Weaviate vector database can search text, images, or a combination of both. Fast vector search provides a foundation for chatbots, recommendation systems, summarizers, and classification systems.

Here are some examples that show how Weaviate integrates with other AI and ML tools:

Use Weaviate with third party embeddings
  • Cohere (blogpost)
  • Hugging Face
  • OpenAI
Use Weaviate as a document store
  • DocArray
  • Haystack (blogpost)
Use Weaviate as a memory backend
  • Auto-GPT (blogpost)
  • LangChain (blogpost)
  • LlamaIndex (blogpost)
  • OpenAI - *** retrieval plugin
Demos

These demos are working applications that highlight some of Weaviate's capabilities. Their source code is available on GitHub.

  • Verba, the Golden RAGtreiver (GitHub)
  • Healthsearch (GitHub)
  • Awesome-Moviate (GitHub)

How can you connect to Weaviate?

Weaviate exposes a GraphQL API and a REST API. Starting in v1.23, a new gRPC API provides even faster access to your data.

Weaviate provides client libraries for several popular languages:

  • Python
  • JavaScript/TypeScript
  • Go
  • Java

There are also community supported libraries for additional languages.

Where can You learn more?

Free, self-paced courses in Weaviate Academy teach you how to use Weaviate. The Tutorials repo has code for example projects. The Recipes repo has even more project code to get you started.

The Weaviate blog and podcast regularly post stories on Weaviate and AI.

Here are some popular posts:

Blogs
  • What to expect from Weaviate in 2023
  • Why is vector search so fast?
  • Cohere Multilingual ML Models with Weaviate
  • Vamana vs. HNSW - Exploring ANN algorithms Part 1
  • HNSW+PQ - Exploring ANN algorithms Part 2.1
  • The Tile Encoder - Exploring ANN algorithms Part 2.2
  • How GPT4.0 and other Large Language Models Work
  • Monitoring Weaviate in Production
  • The *** Retrieval Plugin - Weaviate as a Long-term Memory Store for Generative AI
  • Combining LangChain and Weaviate
  • How to build an Image Search Application with Weaviate
  • Cohere Multilingual ML Models with Weaviate
  • Building Multimodal AI in TypeScript
  • Giving Auto-GPT Long-Term Memory with Weaviate
Podcasts
  • Neural Magic in Weaviate
  • BERTopic
  • Jina AI's Neural Search Framework
Other reading
  • Weaviate is an open-source search engine powered by ML, vectors, graphs, and GraphQL (ZDNet)
  • Weaviate, an ANN Database with CRUD support (DB-Engines.com)
  • A sub-50ms neural search with DistilBERT and Weaviate (Towards Datascience)
  • Getting Started with Weaviate Python Library (Towards Datascience)

Join our community!

At Weaviate, we love to connect with our community. We love helping amazing people build cool things. And, we love to talk with you about you passion for vector databases and AI.

Please reach out, and join our community:

  • Community forum
  • GitHub
  • Slack
  • X (***)

To keep up to date with new releases, meetup news, and more, subscribe to our newsletter

Deployment & Usage Documentation

WEAVIATE Docker 容器化部署指南

WEAVIATE(镜像名称:semitechnologies/weaviate)是一款开源向量数据库,专为新一代人工智能应用设计。作为“AI原生数据库”,它通过内置的向量搜索与混合搜索能力、易于集成的机器学习模型接口以及对数据隐私的专注支持,帮助各级开发者快速构建、迭代和扩展AI应用能力。

Read More
查看更多 weaviate 相关镜像 →
semitechnologies/transformers-inference logo
semitechnologies/transformers-inference
by Weaviate
认证
暂无描述
500K+ pulls
上次更新:2 个月前
semitechnologies/multi2vec-clip logo
semitechnologies/multi2vec-clip
by Weaviate
认证
暂无描述
100K+ pulls
上次更新:1 个月前
semitechnologies/model2vec-inference logo
semitechnologies/model2vec-inference
by Weaviate
认证
暂无描述
10K+ pulls
上次更新:5 个月前

轩辕镜像配置手册

探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式

登录仓库拉取

通过 Docker 登录认证访问私有仓库

Linux

在 Linux 系统配置镜像服务

Windows/Mac

在 Docker Desktop 配置镜像

Docker Compose

Docker Compose 项目配置

K8s Containerd

Kubernetes 集群配置 Containerd

K3s

K3s 轻量级 Kubernetes 镜像加速

宝塔面板

在宝塔面板一键配置镜像

群晖

Synology 群晖 NAS 配置

飞牛

飞牛 fnOS 系统配置镜像

极空间

极空间 NAS 系统配置服务

爱快路由

爱快 iKuai 路由系统配置

绿联

绿联 NAS 系统配置镜像

威联通

QNAP 威联通 NAS 配置

Podman

Podman 容器引擎配置

Singularity/Apptainer

HPC 科学计算容器配置

其他仓库配置

ghcr、Quay、nvcr 等镜像仓库

专属域名拉取

无需登录使用专属域名

需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单

镜像拉取常见问题

轩辕镜像免费版与专业版有什么区别?

免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。

轩辕镜像支持哪些镜像仓库?

专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。

流量耗尽错误提示

当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。

410 错误问题

通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。

manifest unknown 错误

先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。

镜像拉取成功后,如何去掉轩辕镜像域名前缀?

使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。

查看全部问题→

用户好评

来自真实用户的反馈,见证轩辕镜像的优质服务

oldzhang的头像

oldzhang

运维工程师

Linux服务器

5

"Docker访问体验非常流畅,大镜像也能快速完成下载。"

轩辕镜像
镜像详情
...
semitechnologies/weaviate
官方博客Docker 镜像使用技巧与技术博客
热门镜像查看热门 Docker 镜像推荐
一键安装一键安装 Docker 并配置镜像源
提交工单
免费获取在线技术支持请 提交工单,官方QQ群:13763429 。
轩辕镜像面向开发者与科研用户,提供开源镜像的搜索和访问支持。所有镜像均来源于原始仓库,本站不存储、不修改、不传播任何镜像内容。
免费获取在线技术支持请提交工单,官方QQ群: 。
轩辕镜像面向开发者与科研用户,提供开源镜像的搜索和访问支持。所有镜像均来源于原始仓库,本站不存储、不修改、不传播任何镜像内容。
官方邮箱:点击复制邮箱
©2024-2026 源码跳动
官方邮箱:点击复制邮箱Copyright © 2024-2026 杭州源码跳动科技有限公司. All rights reserved.
轩辕镜像 官方专业版 Logo
轩辕镜像轩辕镜像官方专业版
首页个人中心搜索镜像
交易
充值流量我的订单
工具
提交工单镜像收录一键安装
Npm 源Pip 源Homebrew 源
帮助
常见问题
其他
关于我们网站地图

官方QQ群: 13763429