nvidia/cudaCUDA is a parallel computing platform and programming model developed by NVIDIA for general computing on graphical processing units (GPUs). With CUDA, developers can dramatically speed up computing applications by harnessing the power of GPUs.
The CUDA Toolkit from NVIDIA provides everything you need to develop GPU-accelerated applications. The CUDA Toolkit includes GPU-accelerated libraries, a compiler, development tools and the CUDA runtime.
The CUDA container images provide an easy-to-use distribution for CUDA supported platforms and architectures.
The images are governed by the following NVIDIA End User License Agreements. By pulling and using the CUDA images, you accept the terms and conditions of these licenses. Since the images may include components licensed under open-source licenses such as GPL, the sources for these components are archived here.
To view the NVIDIA Deep Learning Container license, click here
For more information on CUDA, including the release notes, programming model, APIs and developer tools, visit the CUDA documentation site.
CUDA image container tags have a lifetime. The tags will be deleted Six Months after the last supported "Tesla Recommended Driver" has gone end-of-life OR a newer update release has been made for the same CUDA version.
Please see CUDA Container Support Policy for more information.
Breaking changes are announced on Gitlab Issue #209.
This may present itself as the following errors.
debian:
Reading package lists... Done W: GPG error: [***] InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY A4B469963BF863CC W: The repository '[***] InRelease' is not signed. N: Data from such a repository can't be authenticated and is therefore potentially dangerous to use. N: See apt-secure(8) manpage for repository creation and user configuration details.
RPM:
warning: /var/cache/dnf/cuda-fedora32-x86_64-d60aafcddb176bf5/packages/libnvjpeg-11-1-11.3.0.105-1.x86_64.rpm: Header V4 RSA/SHA512 Signature, key ID d42d0685: NOKEY cuda-fedora32-x86_64 23 kB/s | 1.6 kB 00:00 Importing GPG key 0x7FA2AF80: Userid : "cudatools <***>" Fingerprint: AE09 FE4B BD22 3A84 B2CC FCE3 F60F 4B3D 7FA2 AF80 From : [***] Is this ok [y/N]: y Key imported successfully Import of key(s) didn't help, wrong key(s)? Public key for libnvjpeg-11-1-11.3.0.105-1.x86_64.rpm is not installed. Failing package is: libnvjpeg-11-1-11.3.0.105-1.x86_64 GPG Keys are configured as: [***] The downloaded packages were saved in cache until the next successful transaction. You can remove cached packages by executing 'dnf clean packages'. Error: GPG check FAILED
Updated images will be pushed out over the next few days containing the new repo key. Please follow progress using the links below:
It is now possible to build CUDA container images for all supported architectures using Docker Buildkit in one step. See the example script below.
The deprecated image names nvidia/cuda-arm64 and nvidia/cuda-ppc64le will remain available, but no longer supported.
The following product pages still exist but will no longer be supported:
The following gitlab repositories will be archived:
The "latest" tag for CUDA, CUDAGL, and OPENGL images has been deprecated on NGC and Docker Hub.
With the removal of the latest tag, the following use case will result in the "manifest unknown" error:
$ docker pull nvidia/cuda Error response from daemon: manifest for nvidia/cuda:latest not found: manifest unknown: manifest unknown
This is not a bug.
Three flavors of images are provided:
base: Includes the CUDA runtime (cudart)runtime: Builds on the base and includes the CUDA math libraries, and NCCL. A runtime image that also includes cuDNN is available. Some images may also include TensorRT.devel: Builds on the runtime and includes headers, development tools for building CUDA images. These images are particularly useful for multi-stage builds.The Dockerfiles for the images are open-source and licensed under 3-clause BSD. For more information see the Supported Tags section below.
The NVIDIA Container Toolkit for Docker is required to run CUDA images.
For CUDA 10.0, nvidia-docker2 (v2.1.0) or greater is recommended. It is also recommended to use Docker 19.03.
Read NVIDIA Container Toolkit Frequently Asked Questions to see if the problem has been encountered before.
After it has been determined the problem is not with the NVIDIA runtime, report an issue at the CUDA Container Image Issue Tracker.
Supported tags are updated to the latest CUDA, cuDNN, and TensorRT versions. These tags are also periodically updated to fix CVE vulnerabilities.
For a full list of supported tags, click here.
Visit OpenSource @ Nvidia for the GPL sources of the packages contained in the CUDA base image layers.
13.1.0-runtime-ubuntu24.04 (13.1.0/ubuntu2404/runtime/Dockerfile)13.1.0-devel-ubuntu24.04 (13.1.0/ubuntu2404/devel/Dockerfile)13.1.0-base-ubuntu24.04 (13.1.0/ubuntu2404/base/Dockerfile)13.1.0-runtime-ubuntu22.04 (13.1.0/ubuntu2204/runtime/Dockerfile)13.1.0-devel-ubuntu22.04 (13.1.0/ubuntu2204/devel/Dockerfile)13.1.0-base-ubuntu22.04 (13.1.0/ubuntu2204/base/Dockerfile)13.1.0-runtime-ubi9 (13.1.0/ubi9/runtime/Dockerfile)13.1.0-devel-ubi9 (13.1.0/ubi9/devel/Dockerfile)13.1.0-base-ubi9 (13.1.0/ubi9/base/Dockerfile)13.1.0-runtime-ubi8 (13.1.0/ubi8/runtime/Dockerfile)13.1.0-devel-ubi8 (13.1.0/ubi8/devel/Dockerfile)13.1.0-base-ubi8 (13.1.0/ubi8/base/Dockerfile)13.1.0-runtime-ubi10 (13.1.0/ubi10/runtime/Dockerfile)13.1.0-devel-ubi10 (13.1.0/ubi10/devel/Dockerfile)13.1.0-base-ubi10 (13.1.0/ubi10/base/Dockerfile)13.1.0-runtime-rockylinux9 (13.1.0/rockylinux9/runtime/Dockerfile)13.1.0-devel-rockylinux9 (13.1.0/rockylinux9/devel/Dockerfile)13.1.0-base-rockylinux9 (13.1.0/rockylinux9/base/Dockerfile)13.1.0-runtime-rockylinux8 (13.1.0/rockylinux8/runtime/Dockerfile)13.1.0-devel-rockylinux8 (13.1.0/rockylinux8/devel/Dockerfile)13.1.0-base-rockylinux8 (13.1.0/rockylinux8/base/Dockerfile)13.1.0-runtime-rockylinux10 (13.1.0/rockylinux10/runtime/Dockerfile)13.1.0-devel-rockylinux10 (13.1.0/rockylinux10/devel/Dockerfile)13.1.0-base-rockylinux10 (13.1.0/rockylinux10/base/Dockerfile)13.1.0-runtime-oraclelinux9 (13.1.0/oraclelinux9/runtime/Dockerfile)13.1.0-devel-oraclelinux9 (13.1.0/oraclelinux9/devel/Dockerfile)13.1.0-base-oraclelinux9 (13.1.0/oraclelinux9/base/Dockerfile)13.1.0-runtime-oraclelinux8 (13.1.0/oraclelinux8/runtime/Dockerfile)13.1.0-devel-oraclelinux8 (13.1.0/oraclelinux8/devel/Dockerfile)13.1.0-base-oraclelinux8 (13.1.0/oraclelinux8/base/Dockerfile)13.1.0-runtime-opensuse15 (13.1.0/opensuse15/runtime/Dockerfile)13.1.0-devel-opensuse15 (13.1.0/opensuse15/devel/Dockerfile)13.1.0-base-opensuse15 (13.1.0/opensuse15/base/Dockerfile)13.1.0-runtime-azl3 (13.1.0/azl3/runtime/Dockerfile)13.1.0-devel-azl3 (13.1.0/azl3/devel/Dockerfile)13.1.0-base-azl3 (13.1.0/azl3/base/Dockerfile)13.1.0-runtime-amzn2023 (13.1.0/amzn2023/runtime/Dockerfile)13.1.0-devel-amzn2023 (13.1.0/amzn2023/devel/Dockerfile)13.1.0-base-amzn2023 (13.1.0/amzn2023/base/Dockerfile)A list of tags that are no longer supported can be found here
This Readme is located in the doc directory of the CUDA Container Image source repository. (history)
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务