专属域名
文档搜索
轩辕助手
Run助手
邀请有礼
返回顶部
快速返回页面顶部
收起
收起工具栏

bitnami/pytorch Docker 镜像 - 轩辕镜像

pytorch
bitnami/pytorch
比特纳米PyTorch安全镜像是一款为深度学习框架PyTorch量身打造的预配置、安全加固型容器镜像,集成经过严格测试的依赖组件,具备漏洞扫描、合规性检查及持续更新机制,可有效保障开发环境安全,简化从模型训练到部署的全流程,适用于科研机构、企业开发者在AI项目中快速构建稳定、安全的PyTorch运行环境。
76 收藏0 次下载activebitnami镜像
🚀专业版镜像服务,面向生产环境设计
版本下载
🚀专业版镜像服务,面向生产环境设计

Bitnami Secure Image for PyTorch

What is PyTorch?

PyTorch is a deep learning platform that accelerates the transition from research prototyping to production deployment. Bitnami image includes Torchvision for specific computer vision support.

Overview of PyTorch Trademarks: This software listing is packaged by Bitnami. The respective trademarks mentioned in the offering are owned by the respective companies, and use of them does not imply any affiliation or endorsement.

TL;DR

console
docker run -it --name pytorch bitnami/pytorch

Why use Bitnami Secure Images?

Those are hardened, minimal CVE images built and maintained by Bitnami. Bitnami Secure Images are based on the cloud-optimized, security-hardened enterprise OS Photon Linux. Why choose BSI images?

  • Hardened secure images of popular open source software with Near-Zero Vulnerabilities
  • Vulnerability Triage & Prioritization with VEX Statements, KEV and EPSS Scores
  • Compliance focus with FIPS, STIG, and air-gap options, including secure bill of materials (SBOM)
  • Software supply chain provenance attestation through in-toto
  • First class support for the internet’s favorite Helm charts

Each image comes with valuable security metadata. You can view the metadata in our public catalog here. Note: Some data is only available with commercial subscriptions to BSI.

!Alt text !Alt text

If you are looking for our previous generation of images based on Debian Linux, please see the Bitnami Legacy registry.

Why use a non-root container?

Non-root container images add an extra layer of security and are generally recommended for production environments. However, because they run as a non-root user, privileged tasks are typically off-limits. Learn more about non-root containers in our docs.

Supported tags and respective Dockerfile links

Learn more about the Bitnami tagging policy and the difference between rolling tags and immutable tags in our documentation page.

You can see the equivalence between the different tags by taking a look at the tags-info.yaml file present in the branch folder, i.e bitnami/ASSET/BRANCH/DISTRO/tags-info.yaml.

Subscribe to project updates by watching the bitnami/containers GitHub repo.

Get this image

The recommended way to get the Bitnami Pytorch Docker Image is to pull the prebuilt image from the Docker Hub Registry.

console
docker pull bitnami/pytorch:latest

To use a specific version, you can pull a versioned tag. You can view the list of available versions in the Docker Hub Registry.

console
docker pull bitnami/pytorch:[TAG]

If you wish, you can also build the image yourself by cloning the repository, changing to the directory containing the Dockerfile and executing the docker build command. Remember to replace the APP, VERSION and OPERATING-SYSTEM path placeholders in the example command below with the correct values.

console
git clone [***]
cd bitnami/APP/VERSION/OPERATING-SYSTEM
docker build -t bitnami/APP:latest .

Entering the REPL

By default, running this image will drop you into the Python REPL, where you can interactively test and try things out with PyTorch in Python.

console
docker run -it --name pytorch bitnami/pytorch

Configuration

Running your PyTorch app

The default work directory for the PyTorch image is /app. You can mount a folder from your host here that includes your PyTorch script, and run it normally using the python command.

console
docker run -it --name pytorch -v /path/to/app:/app bitnami/pytorch \
  python script.py
Running a PyTorch app with package dependencies

If your PyTorch app has a requirements.txt defining your app's dependencies, you can install the dependencies before running your app.

console
docker run -it --name pytorch -v /path/to/app:/app bitnami/pytorch \
  sh -c "conda install -y --file requirements.txt && python script.py"

Further Reading:

  • pytorch documentation
  • conda documentation
FIPS configuration in Bitnami Secure Images

The Bitnami PyTorch Docker image from the Bitnami Secure Images catalog includes extra features and settings to configure the container with FIPS capabilities. You can configure the next environment variables:

  • OPENSSL_FIPS: whether OpenSSL runs in FIPS mode or not. yes (default), no.

Maintenance

Upgrade this image

Bitnami provides up-to-date versions of PyTorch, including security patches, soon after they are made upstream. We recommend that you follow these steps to upgrade your container.

Step 1: Get the updated image
console
docker pull bitnami/pytorch:latest

or if you're using Docker Compose, update the value of the image property to bitnami/pytorch:latest.

Step 2: Remove the currently running container
console
docker rm -v pytorch

or using Docker Compose:

console
docker-compose rm -v pytorch
Step 3: Run the new image

Re-create your container from the new image.

console
docker run --name pytorch bitnami/pytorch:latest

or using Docker Compose:

console
docker-compose up pytorch

Notable changes

1.9.0-debian-10-r3

This version removes miniconda in favour of pip. This creates a smaller container and least prone to security issues. Users extending this container with other packages will need to switch from conda to pip commands.

Using docker-compose.yaml

Please be aware this file has not undergone internal testing. Consequently, we advise its use exclusively for development or testing purposes. For production-ready deployments, we highly recommend utilizing its associated Bitnami Helm chart.

If you detect any issue in the docker-compose.yaml file, feel free to report it or contribute with a fix by following our Contributing Guidelines.

Contributing

We'd love for you to contribute to this Docker image. You can request new features by creating an issue or submitting a pull request with your contribution.

Issues

If you encountered a problem running this container, you can file an issue. For us to provide better support, be sure to fill the issue template.

License

Copyright © 2025 Broadcom. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

<[***]>

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

查看更多 pytorch 相关镜像 →
pytorch/pytorch logo
pytorch/pytorch
by pytorch
PyTorch是一款以Python为首要设计理念的深度学习框架,凭借简洁易用的Python接口、动态计算图机制及强大的灵活性,广泛应用于学术研究与工业开发,支持从快速原型设计到大规模部署的全流程,深度融合Python数据科学生态,为开发者提供高效且直观的深度学习解决方案。
157310M+ pulls
上次更新:2 个月前
rocm/pytorch logo
rocm/pytorch
by AMD
认证
基于ROCm的PyTorch Docker镜像为开发者提供了预配置的深度学习环境,集成了PyTorch框架与AMD ROCm开源计算平台,支持AMD GPU硬件加速,无需手动配置驱动及库依赖,可直接用于深度学习模型的开发、训练与部署,有效简化环境搭建流程,确保跨平台一致性,适用于科研机构、工业界等多种场景,助力高效利用AMD硬件资源开展AI相关任务。
114500K+ pulls
上次更新:1 个月前
bitnamicharts/pytorch logo
bitnamicharts/pytorch
by VMware
认证
Bitnami提供的PyTorch Helm chart,用于在Kubernetes环境中简化PyTorch的部署与管理。
100K+ pulls
上次更新:19 天前
chainguard/pytorch logo
chainguard/pytorch
by Chainguard, Inc.
认证
使用Chainguard的低至零CVE容器镜像构建、交付和运行安全软件。
10K+ pulls
上次更新:6 天前
pytorch/manylinux-builder logo
pytorch/manylinux-builder
by pytorch
暂无描述
11M+ pulls
上次更新:10 个月前
pytorch/manylinux2_28-builder logo
pytorch/manylinux2_28-builder
by pytorch
暂无描述
1M+ pulls
上次更新:5 天前

轩辕镜像配置手册

探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式

登录仓库拉取

通过 Docker 登录认证访问私有仓库

Linux

在 Linux 系统配置镜像服务

Windows/Mac

在 Docker Desktop 配置镜像

Docker Compose

Docker Compose 项目配置

K8s Containerd

Kubernetes 集群配置 Containerd

K3s

K3s 轻量级 Kubernetes 镜像加速

宝塔面板

在宝塔面板一键配置镜像

群晖

Synology 群晖 NAS 配置

飞牛

飞牛 fnOS 系统配置镜像

极空间

极空间 NAS 系统配置服务

爱快路由

爱快 iKuai 路由系统配置

绿联

绿联 NAS 系统配置镜像

威联通

QNAP 威联通 NAS 配置

Podman

Podman 容器引擎配置

Singularity/Apptainer

HPC 科学计算容器配置

其他仓库配置

ghcr、Quay、nvcr 等镜像仓库

专属域名拉取

无需登录使用专属域名

需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单

镜像拉取常见问题

轩辕镜像免费版与专业版有什么区别?

免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。

轩辕镜像支持哪些镜像仓库?

专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。

流量耗尽错误提示

当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。

410 错误问题

通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。

manifest unknown 错误

先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。

镜像拉取成功后,如何去掉轩辕镜像域名前缀?

使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。

查看全部问题→

用户好评

来自真实用户的反馈,见证轩辕镜像的优质服务

oldzhang的头像

oldzhang

运维工程师

Linux服务器

5

"Docker访问体验非常流畅,大镜像也能快速完成下载。"

轩辕镜像
镜像详情
...
bitnami/pytorch
官方博客Docker 镜像使用技巧与技术博客
热门镜像查看热门 Docker 镜像推荐
一键安装一键安装 Docker 并配置镜像源
提交工单
免费获取在线技术支持请 提交工单,官方QQ群:13763429 。
轩辕镜像面向开发者与科研用户,提供开源镜像的搜索和访问支持。所有镜像均来源于原始仓库,本站不存储、不修改、不传播任何镜像内容。
免费获取在线技术支持请提交工单,官方QQ群: 。
轩辕镜像面向开发者与科研用户,提供开源镜像的搜索和访问支持。所有镜像均来源于原始仓库,本站不存储、不修改、不传播任何镜像内容。
官方邮箱:点击复制邮箱
©2024-2026 源码跳动
官方邮箱:点击复制邮箱Copyright © 2024-2026 杭州源码跳动科技有限公司. All rights reserved.
轩辕镜像 官方专业版 Logo
轩辕镜像轩辕镜像官方专业版
首页个人中心搜索镜像
交易
充值流量我的订单
工具
提交工单镜像收录一键安装
Npm 源Pip 源Homebrew 源
帮助
常见问题
其他
关于我们网站地图

官方QQ群: 13763429