
ai/qwen3!logo
Qwen3 is the latest generation in the Qwen LLM family, designed for top-tier performance in coding, math, reasoning, and language tasks. It includes both dense and Mixture-of-Experts (MoE) models, offering flexible deployment from lightweight apps to large-scale research.
Qwen3 introduces dual reasoning modes—"thinking" for complex tasks and "non-thinking" for fast responses—giving users dynamic control over performance. It outperforms prior models in reasoning, instruction following, and code generation, while excelling in creative writing and dialogue.
With strong agentic and tool-use capabilities and support for over 100 languages, Qwen3 is optimized for multilingual, multi-domain applications.
| Attribute | Value |
|---|---|
| Provider | Alibaba Cloud |
| Architecture | qwen3 |
| Cutoff date | April 2025 (est.) |
| Languages | 119 languages from multiple families (Indo European, Sino-Tibetan, Afro-Asiatic, Austronesian, Dravidian, Turkic, Tai-Kadai, Uralic, Astroasiatic) including others like Japanese, Basque, Haitian,... |
| Tool calling | ✅ |
| Input modalities | Text |
| Output modalities | Text |
| License | Apache 2.0 |
| Model variant | Parameters | Quantization | Context window | VRAM¹ | Size |
|---|---|---|---|---|---|
ai/qwen3:8B-Q4_K_Mai/qwen3:latest | 8B | MOSTLY_Q4_K_M | 41K tokens | 5.80 GiB | 4.68 GB |
ai/qwen3:0.6B-Q4_0 | 0.6B | MOSTLY_Q4_0 | 41K tokens | 1.51 GiB | 441.67 MB |
ai/qwen3:0.6B-Q4_K_M | 0.6B | MOSTLY_Q4_K_M | 41K tokens | 1.53 GiB | 456.11 MB |
ai/qwen3:0.6B-F16 | 0.6B | MOSTLY_F16 | 41K tokens | 2.27 GiB | 1.40 GB |
ai/qwen3:4B-F16 | 4B | MOSTLY_F16 | 262K tokens | 8.92 GiB | 7.49 GB |
ai/qwen3:4B-UD-Q4_K_XL | 4B | MOSTLY_Q4_K_M | 262K tokens | 3.80 GiB | 2.37 GB |
ai/qwen3:8B-F16 | 8B | MOSTLY_F16 | 41K tokens | 15.54 GiB | 15.26 GB |
ai/qwen3:14B-Q6_K | 14B | MOSTLY_Q6_K | 41K tokens | 12.27 GiB | 11.28 GB |
ai/qwen3:30B-A3B-F16 | 30B-A3B | MOSTLY_F16 | 41K tokens | 57.55 GiB | 56.89 GB |
ai/qwen3:30B-A3B-Q4_K_M | 30B-A3B | MOSTLY_Q4_K_M | 41K tokens | 18.35 GiB | 17.28 GB |
ai/qwen3:4B-UD-Q8_K_XL | 4B | MOSTLY_Q8_0 | 262K tokens | 6.13 GiB | 4.70 GB |
ai/qwen3:8B-Q4_0 | 8B | MOSTLY_Q4_0 | 41K tokens | 5.56 GiB | 4.44 GB |
¹: VRAM estimated based on model characteristics.
latest→8B-Q4_K_M
Qwen3-8B is designed for a wide range of advanced natural language processing tasks:
/think and /no_think prompts (when enable_thinking=True). This allows dynamic control over the model's reasoning depth during multi-turn conversations.Note: Qwen3 models use a new naming convention: post-trained models no longer include the
-Instructsuffix (e.g.,Qwen3-32BreplacesQwen2.5-32B-Instruct), and base models now end with-Base.
First, pull the model:
bashdocker model pull ai/qwen3
Then run the model:
bashdocker model run ai/qwen3
For more information, check out the Docker Model Runner docs.
| Category | Benchmark | Qwen3 |
|---|---|---|
| General Tasks | MMLU | 87.81 |
| MMLU-Redux | 87.40 | |
| MMLU-Pro | 68.18 | |
| SuperGPQA | 44.06 | |
| BBH | 88.87 | |
| Mathematics & Science Tasks | GPQA | 47.47 |
| GSM8K | 94.39 | |
| MATH | 71.84 | |
| Multilingual Tasks | MGSM | 83.53 |
| MMMLU | 86.70 | |
| INCLUDE | 73.46 | |
| Code Tasks | EvalPlus | 77.60 |
| MultiPL-E | 65.94 | |
| MBPP | 81.40 | |
| CRUX-O | 79.00 |



探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务